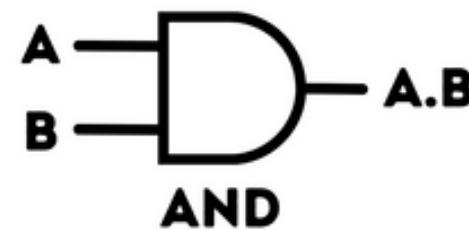


Logic Circuits

& **UNIVERSITY
CENTRE**

AND gate

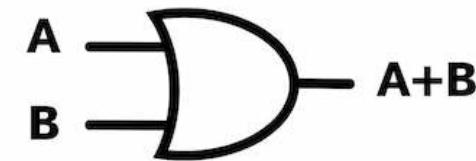
- An AND gate uses two inputs to generate one output
- The output is 1 (TRUE) only if both inputs are 1 (TRUE)
- AND gates are also known as a conjunction
- AND has the notation **A.B** / **AB** / **A*B** / **A AND B**



2 input AND Gate		
A	B	A.B
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

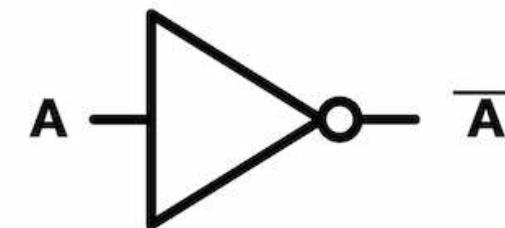
- An OR gate uses two inputs to generate one output
- The output is 1 (TRUE) if either of the inputs are 1 (TRUE)
- OR gates are also known as a disjunction
- OR gates have the notation **A+B / A OR B**



2 input OR gate		
A	B	A+B
0	0	0
0	1	1
1	0	1
1	1	1

NOT gate

- A NOT gate takes 1 input to generate 1 output
- The output is the inverse of the input
- NOT gates are also known as the negation or an inverter
- NOT gates have the notation \bar{A} / $\sim A$ / **NOT A** / A'



2 input NOT gate	
A	\bar{A}
0	1
1	0

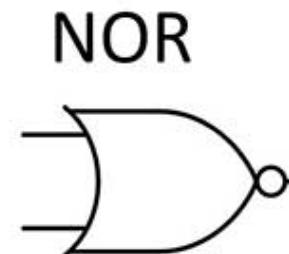
XOR gate

- An XOR gate takes 2 inputs to generate 1 output
- It's very similar to an OR gate but only outputs true if one of the two inputs are true not both
- XOR gates are also known as an exclusive disjunction
- XOR gates have the notation $A \oplus B$ / AXORB

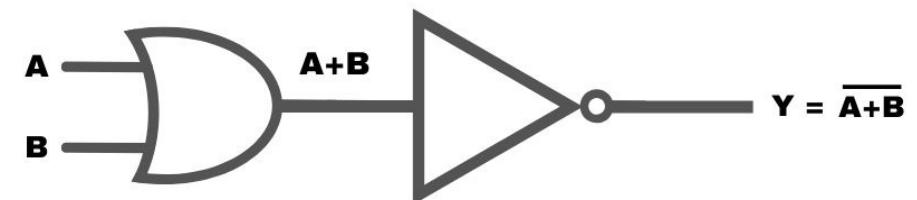
2 input XOR gate		
A	B	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

NOR gate

- A NOR gate takes 2 inputs to generate 1 output
- It's the combination of an OR gate and a NOT gate
- NOR gates have the notation $(A+B)'$ / $\overline{A+B}$ / ANORB

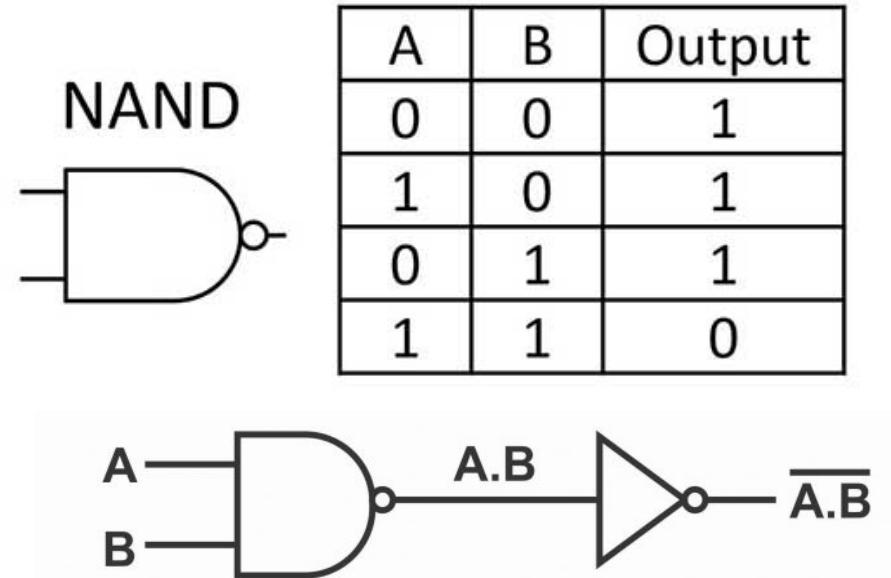


A	B	Output
0	0	1
1	0	0
0	1	0
1	1	0



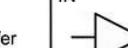
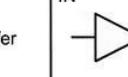
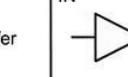
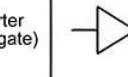
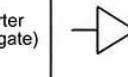
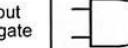
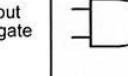
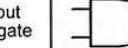
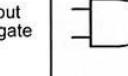
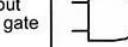
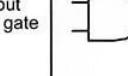
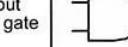
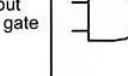
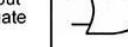
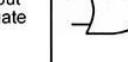
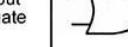
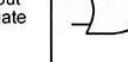
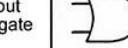
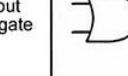
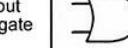
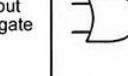
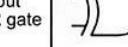
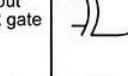
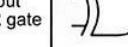
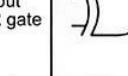
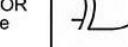
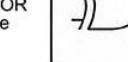
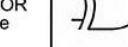
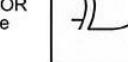
NAND gate

- A NAND gate takes 2 inputs to generate 1 output
- It's the combination of an AND gate and a NOT gate
- AND gates have the notation $(A \cdot B)'$ / \overline{AB} / ANANDB



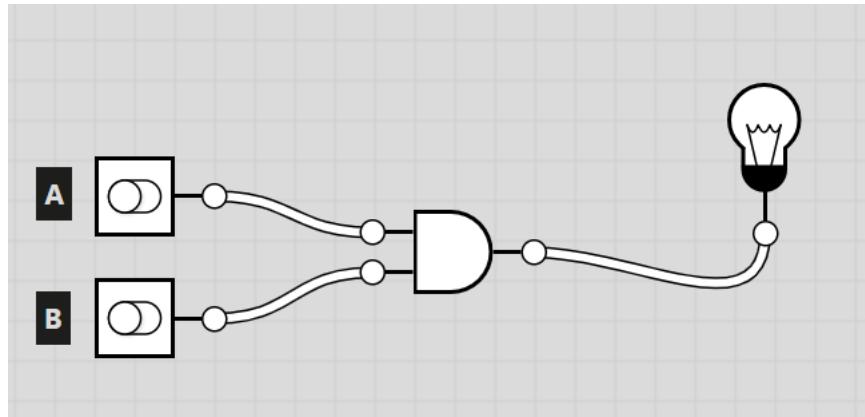
Symbol Standards

- So far, we have looked at the American standard symbols
- The American standard has become the international standard
- Both BS and IEC are deprecated and thus aren't used commonly

Logic function	American (MIL/ANSI) Symbol	British (BS3939) Symbol	Common German Symbol	International Electrotechnical Commission (IEC) Symbol
Buffer				
Inverter (NOT gate)				
2-input AND gate				
2-input NAND gate				
2-input OR gate				
2-input NOR gate				
2-input EX-OR gate				
2-input EX-NOR gate				

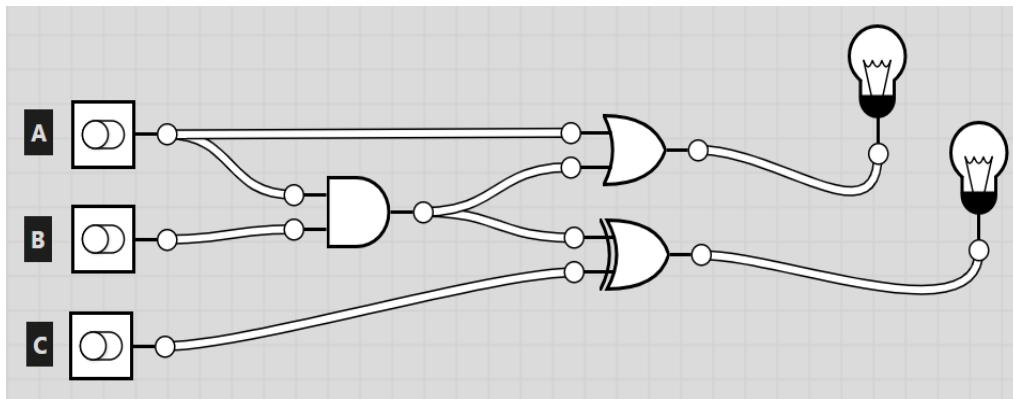
Truth Tables

- Truth Tables help us to understand the output of a binary logic circuit
- They systematically lists all possible combinations of truth values (true or false, often represented as 1 and 0) for given input variables



A	B	A.B
0	0	0
0	1	0
1	0	0
1	1	1

More Complex Truth Tables



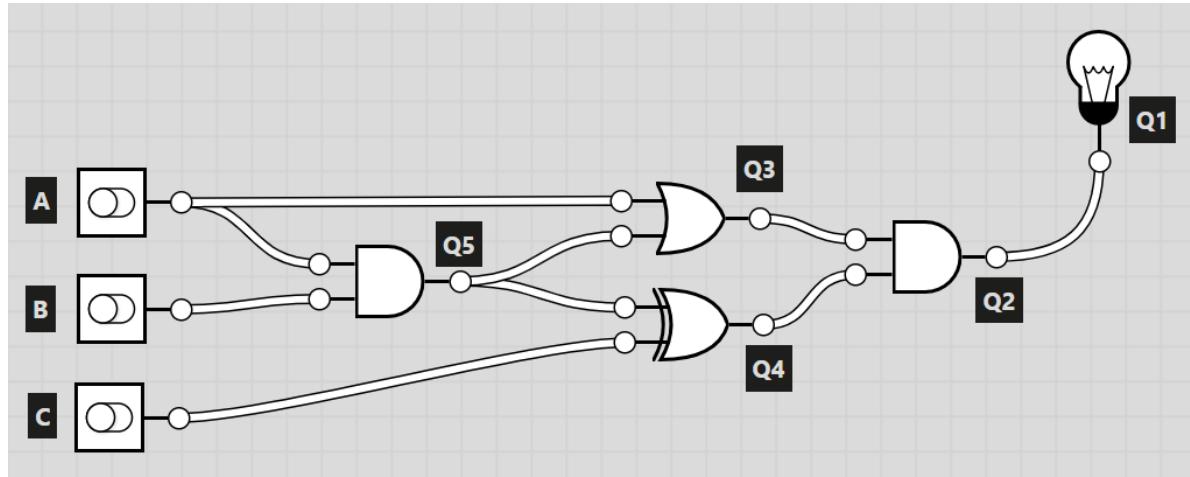
A	B	C	A.B	A+(A.B)	C⊕(A.B)
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	0	0
0	1	1	0	0	1
1	0	0	0	1	0
1	0	1	0	1	1
1	1	0	1	1	1
1	1	1	1	1	0

More complex truth table simplified

A	B	C	$A+(A \cdot B)$	$C \oplus (A \cdot B)$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	0

Binary Algebra

- Binary Algebra uses binary notation to understand a Binary logic circuit
- We can trace backwards through our binary logic circuit to write out our notation
- We can then put in our numbers to get a quick answer to the outcome



$$Q1 = Q2 = Q3 \cdot Q4$$

$$Q4 = Q5 \oplus C$$

$$Q3 = A + Q5$$

$$Q4 = (A \cdot B) \oplus C$$

$$Q5 = A \cdot B$$

$$Q1 = (A + (A \cdot B)) \cdot ((A \cdot B) \oplus C)$$

$$Q3 = A + (A \cdot B)$$

Binary Algebra – Finding the Outcome

$$Q1 = (A + (A \cdot B)) \cdot ((A \cdot B) \oplus C)$$

$$A = 1$$

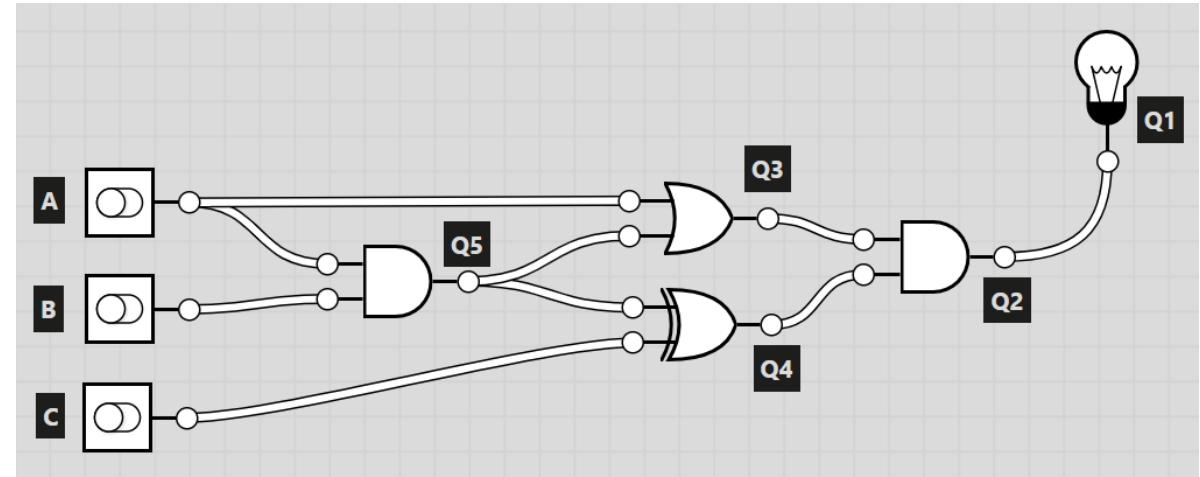
$$B = 0$$

$$C = 1$$

$$(1 + (1 * 0)) * ((1 * 0) \oplus 1)$$

$$(1 + 0) * (0 \oplus 1)$$

$$1 * 1 = 1$$



Simulating Binary Logic Circuits

<https://logic.ly/>

Classwork
